

## **Illuminating Spatial Proteomics**

Use Microscoop™ to reveal unknown subcellular and organelle proteomes from cell and tissue samples.

## **Product Features**

- Microscoop is an integrated system that uses high precision photolabeling to "scoop" up specific subcellular regions and capture the desired proteome information.
- Microscoop mechatronics controls the high speed pattern recognition and illumination to collect proteins from tens of thousands of individual cells within a few hours.
- Al-assisted model is capable of recognizing subcellular targets with higher accuracy than using conventional computer vision processing alone.
- With specific photoactivatable probes, Microscoop can perform multi-omics analysis from the same specimen.



**Figure 1. Microscoop Workflow for** *De Novo* **Spatial Proteomics.** Step 1: Cells or tissue sections are imaged first to generate a scanning pattern by AI. Step 2: Sample is immersed in a photoactivatable probe solution and two-photon pattern illumination triggers protein labeling in the target areas. Step 3: Labeled proteins are extracted from the samples. Step 4: Purified proteins are analyzed by LC-MS/MS to obtain the proteome data.



## Al-based Image Processing Applicable to subcellular and cell-type-specific recognition Organelle: Nuclei Organelle: immune synapses Organelle: Nucleoli

**Figure 2. Use AI to Recognize Specific Regions of Interest.** The AI algorithm will direct pattern recognition of selected subcellular structures or celltypes and guide Microscoop to perform 3D photolabeling of location-specific patterns automatically. Examples of regions of interest illustrated here include nuclei, immune synapses, nucleoli, stress granules, neurons, and microvilli.

Tissue-specific cell types

## **Application Areas**

Organelle: Stress granules



**Figure 3. Broad research and clinical applications.** Microscoop technology has immediate applications in oncology, cancer immunotherapy, neurobiology, immunology, infectious disease and developmental biology. Figure A, B, D, F image credit: National Cancer Institute. Figure E image credit: Zhou et al., 2020.



Real-time Microscoop™ experiment

Tissue topology



Wehsite