

WHITE PAPER

Unveiling Primary Ciliary Proteins with MicroscoopTM

June. 2024 | #WP002

Authors

Hsiao-Jen Chang, Chantal Hoi Yin Cheung, and Hsuan-Hsuan Lu

For research use only. Not for use in diagnostic procedures.

syncell.com

Introduction

Primary cilia are microtubule-based organelles extending from the surface of most mammalian cells, playing pivotal roles in signal transduction and cellular functions¹. Malfunctions of primary cilia are implicated in a number of genetic disorders termed ciliopathies, including polycystic kidney disease², Bardet-Biedl syndrome³, and Joubert syndrome⁴. These conditions adversely affect organs such as the kidneys, retina, and brain, influencing key biological processes like cell cycle regulation and tissue development. The study of primary cilia, despite their significance, is filled with challenges. The organelles' diminutive size and structural delicacy significantly complicate their analysis. Additionally, the dynamic nature of their assembly further complicates their study, necessitating high-resolution techniques for detailed analysis.

Addressing these challenges, the Microscoop[™] platform emerges as an advancement in biological research technology, particularly enhancing the capability for spatial photolabeling at the microscale. It enables the in-depth investigation of primary cilia, providing the necessary precision and detail to comprehensively explore their biological function. With the potential to transform our understanding of ciliary functions in both health and disease, its application in proteomic analysis demonstrates its utility in unraveling the complex protein constitutes of primary cilia, essential for elucidating cellular mechanisms and pathogenesis.

Capturing and analyzing primary cilia with Microscoop[™]

The Microscoop[™] platform is designed for the isolation and identification of proteins within submicron cellular regions, specifically aiming to target and analyze subcellular organelles such as primary cilia. It combines a motorized epifluorescence microscope, a high-resolution sCMOS camera, and a two-photon light source. This system is further enhanced by a specially developed photochemical probe (Fig. 1), allowing for precise targeting and isolation of primary cilia for proteomic analysis. To facilitate visualization, primary cilia are pre-stained with the well-known marker polyglutamylation modification (GT335). Real-time image analysis is employed to segment the primary cilia and filter out non-specific signals, using a combination of thresholding, size and length exclusion, and morphological recognition techniques. This ensures efficient segmentation of each Field of View (FOV) image for identifying primary cilia, thereby enabling effective path planning and labeling control. Through the use of two-photon illumination, the system triggers photochemical agents to photo-biotinylate proteins within the primary cilia. The Microscoop™ platform controls the sequential photo-biotinylation of individual primary cilia via mechatronic position control, processing millions of primary cilia to collect sufficient proteins for downstream proteomic analysis. The photo-biotinylated proteins are then subjected to streptavidin pull-down, followed by hypothesis-free mass spectrometry (LC-MS/MS) analysis, facilitating a comprehensive proteomics discovery. By integrating ultrahigh-content, high-speed microscopy with targeted photobiotinylation, the Microscoop[™] platform revolutionizes the study of primary cilia, enabling spatial isolation for proteomic discovery.

Fig. 1 | Schematic workflow for mapping the primary cilia proteome. A microscopy-guided protein discovery platform integrates image acquisition, photochemistry, microscopy, optics, and mechatronics enables ultrahigh-content *in situ* photolabeling followed by mass spectrometry analysis.

Microscoop[™] has been engineered to enable photolabeling at the subcellular level, targeting ROIs such as primary cilia, which are presumed to have uniform protein constituents identifiable by distinct morphological features and contrast under microscopy. This method involves several steps executed millions of times: 1) employing microscopy to identify primary cilia; 2) capturing images; 3) processing images to eliminate background noise; 4) recognizing primary cilia patterns; 5) illuminating within primary cilia for photochemical labeling; 6) transitioning to the next FOV (Fig. 2). This repetitive process is crucial for spatially isolating proteins, thereby gathering enough proteins to address the challenge of protein amplification. Remarkably, existing technologies lack the capability for such extensive and rapid repetition across locations and timespans.

Fig. 2 | The process and design of the microscopy-guided protein isolation platform. The process includes: (1) identifying the primary cilia by light microscopy; (2) acquiring images of primary cilia; (3) processing images to identify primary cilia as ROIs; (4) generating realtime patterns of ROIs; (5) illuminating the selected region within ROIs for protein photobiotinylation; (6) moving the stage to the next FOV; and repeating steps 1-5 for each FOV until all FOVs of intereest have been processed.

The images are processed in real-time to segment the primary cilia using image processing techniques, including thresholding, filtering, size and length exclusion, and morphological recognition. These steps are uniformly applied across all FOVs, with pre-processing or post-processing adjustments to ensure consistent image quality. The segmentation results, depicted in Figure 3, require 0.1 to 1 second for completion, varying with the image's complexity and quality. Following segmentation, the coordinates of the primary cilia's grid points are determined. A planned path for photochemical activation is then optimized and used to guide the galvanometers (galvos) across these points. The galvos and the Acousto-Optic Modulator (AOM) synchronize to within approximately 100 microseconds, enabling precise control over the locations and duration, thus ensuring a consistent photochemical reaction across all spots. For locations with multiple primary cilia, the scanning path sequentially targets each cilium, initiating at the periphery and spiraling clockwise towards the center before proceeding to the next cilium's starting point. This method reduces travel time and minimizes mechanical stress on the galvos. Achieving this level of intricacy within a feasible timeframe relies on speed optimization, seamless automation, and accurate mechatronic control throughout the process.

To validate the labeling accuracy and precision for primary cilia as small as 0.2 µm in width and 1 µm in length, primary cilia of RPE-1 cells were pre-stained with GT335, followed by photobiotinylation using Microscoop[™]. The platform accurately recognized primary cilia, enabling targeted spatial photolabeling with two-photon illumination. This method facilitated the isolation of primary cilia proteins with high specificity, as demonstrated by the congruence between the *in situ* biotinylated regions (green) and the primary cilia (red) fluorescence in both lateral (xy) and axial (z) directions (Fig. 3, right panel).

Fig. 3| Primary cilia are processed by filtering and segmentation by image processing (left), Confocal micrographs depicting precise and accurate photolabeled primary cilia at lateral (xy)- and axial (z) directions (right). Red: GT335, Green: NeutrAvidin-488, Blue: DAPI.

Unveiling ciliary proteins andfunctional insights

Photolabeling experiments were conducted on PFA fixed RPE-1 cells, specifically targeting regions marked with GT335 to elucidate the protein composition of primary cilia (Fig. 4A). Following hours of precise photolabeling, cells were harvested and lysed to extract proteins. The photolabeled proteins were subsequently enriched through streptavidin bead pulldown, digested with trypsin, and analyzed via LC-MS/MS. This comprehensive analysis resulted in the high-confidence identification of 4,233 proteins (Figure 4B) and a total of 608 ciliary proteins were identified among experiments (Figure 4C). Among the identified proteins, key ciliary trafficking components such as intraflagellar transport proteins (IFTs), kinesins, dyneins, GTPases, and phosphatidylinositol phosphates (PIPs) were enriched, exhibiting high photolabeling to control (PL/CTL) ratios (Fig. 4D). Additionally,

proteins involved in structural support and cellular organization, including microtubules, septins, and annexins, were also observed to be enriched within the photolabeled sample.

Gene ontology (GO) enrichment analysis further validated these findings, demonstrating a significant association of the enriched proteins with critical biological processes such as ciliary assembly, transportation, and signaling, underpinning the complex functionality of the ciliary proteome (Fig. 4E). Notably, proteins involved in intraciliary transport, a crucial aspect of cilium assembly, were significantly overrepresented in the GO category related to this process. These findings support the effectiveness of targeted photolabeling and proteomic analysis in revealing the network of proteins essential for ciliary function and structure.

Furthermore, 427 ciliary proteins showing significant enrichment in the photolabeled group, indicative of their specific association with primary cilia. These 427 known ciliary proteins were subjected to Reactome pathway analysis, revealing major ciliary pathways such as intraflagellar transport, cilium assembly, signal transduction, cellular responses to stimuli and stress, cell cycle regulation, autophagy, and organelle biogenesis and maintenance (Fig. 4F). Intraflagellar transport and cilium assembly are essential for the movement of molecular cargo along the cilia, ensuring proper ciliary assembly and function. Signal transduction pathways are critical for cilia in transmitting extracellular signals to the interior, influencing various cellular responses. The involvement of ciliary proteins in the cell cycle highlights the importance of cilia in regulating cell division and growth. Autophagy and organelle biogenesis and maintenance pathways underscore the role of cilia in cellular housekeeping and the recycling of cellular components. These pathways are crucial for ciliary function and development, covering a significant portion of the identified ciliary proteome.

С

D

Photo-biotinylation Enriched Primary Cilia Proteins

ABCC4	ATG3	CEP112	CTTN	ELMO2	HSPA4L	KIF23	MYO1E	PCM1	QKI	SDCCAG8	TNS3	WDHD1
ABLIM1	ATG5	CEP120	CUL3	ELP4	HSPA5	KIF24	MYO1F	PCNT	RAB10	SEC23A	TOGARAM2	WDR1
ABRAXAS2	ATG7	CEP128	CYFIP2	EML1	HSPA8	KIF2A	MYO3B	PDCD6IP	RAB11A	SEC63	TP53BP1	WDR11
ACLY	ATP1A1	CEP131	CYLD	EPB41L3	HSPBP1	KIF2C	MYO5A	PDE1C	RAB13	SEPTIN10	TPM3	WDR12
ACOT9	ATP1B1	CEP135	CYP51A1	EPS15	HSPD1	KIF3A	MY05C	PDGFRA	RAB14	SEPTIN11	TRABD	WDR13
ACTN1	ATP2A2	CEP152	DCTN1	EPS8L2	HUWE1	KIE3B	MY06	PDIA6	RAB18	SEPTIN2	TRAPPC10	WDR18
ACTN4	ATP2R4	CEP164	DCTN2	FRC1	HYDIN	KIE4A	MY09A	PDXDC1	RAB1B	SEPTING	TRAPPC3	WDR19
ACTR1A	ATP6V0D1	CEP170	DCTN3	EXOC3	HYOUI	KIE5B	MYO9B	PEX6	RAB21	SEPTIN7	TRAPPC9	WDR24
ACTR2	ATP6V1A	CEP170B	DCTN4	EXOC4	IDE	KIESC	MYOF	PEKM	RAB23	SEPTINS	TRIM32	WDR26
ACTR3	ATP6V1D	CEP192	DDX1	EXOC5	IEIT3	KIF7	NAXE	PEN2	RAB2A	SEPTIN9	TRIM59	WDR3
ADCY3	ATXN10	CEP250	DDX21	EXOC6	IFT122	KIEAP3	NRFA	PIRE1	RAB32	SETX	TRIP11	WDR33
ADD3	ATXN2I	CEP290	DDX56	EXOC6B	IFT140	KIFBP	NCAPD2	PIGS	RAB34	SE3A1	TSC2	WDR35
AK1	AURKA	CEP350	DDX6	FZR	IFT172	KIEC1	NCAPG	PIK3C3	RAB35	SF3R2	TSG101	WDR36
AK2	AVI	CEP43	DHX30	EHI 2	IFT27	KIEC3	NDC80	PIK3R4	RAB3B	SH3GL1	TTC21B	WDR37
AKAPO	BBC1	CEP43	DHY9	EKBDE	IETE2	KIDDEI 1	NDE1	PIN1	PAB3C	SHROOMS	TTE2	WDRA
AKT1	BBC2	CEP57	DID	EKBDS	IETEG	LAMAE	NEDD1	PIA2	RADSC RAREA	SKP1	TTU 12	WDR43
ALMS1	BBS4	CEP63	DLG5	FLNA	IFT57	LDHB	NEDD4I	PKD2	RABSR	SI AIN2	TURAIR	WDR45
ANKMY2	BBS7	CEP76	DMD	ENRP1I	IETZOA	LGALS3	NEK1	PKM	RABSC	SLIPP	TURAAA	WDR46
ANKCZ	BBC0	CEP70	DNAAEE	FOCAD	IET74	LORLOS	NEKS	PIK1	RABSC	SLIN	TURAAR	WDR47
	DDI2DD	CEP92	DNAH11	GAK	IETRO	MACEI	NEKO	POLAZ	DAD7A	SMARCAA	TURP	WDD49
ANYA11	BSG	CEP89	DNAIA1	GANAR	IET81	MAPIA	NHERE1	POLDI	RABBA	SMPD4	TUBB2A	WDR5
ANYAG	C2CD3	CEP97	DNAIR1	GDI2	IETRO	MAPIR	NID2	POP	DARSE	SOPD	TUPP2	WDR55
ANYAZ	CALP	CEAP20	DNM2	GLE1	IMPDH2	MAPIS	NIN	PDA1	DARED2	SPTANI	TURRAA	WDR6
AP2A1	CALI	CHD4	DNMT1	GLOD4	INPP44	MAPIS	NME7	PPIA	RABLE 2	SOSTMI	TUBB4R	WDR62
AP3M2	CAMK2D	CHORDC1	DPVSI 2	GLOD4	INPP/B	MAPAKS	NOL6	PPID	RABL6	SPI	TUBB6	WDR7
APEY1	CAMEADI	CIT	DROSHA	GMDS	INPRE	MAPO	NOTCH2	PPP1CC	RAC1	CDD	TURGCR2	WDR70
APP	CAMSAP2	CKAP2	DSG2	GNA11	INPPL 1	MAPKAPI	NPHP3	PPP2R1A	RAN	SSY2IP	TUBGCP3	WDR75
	CAPN1	CKAPS	DSTN	GOT2	INTS1	MAPKEP1	NPHPA	PPDYA	RANRP1	STATS	TUBGCPA	WDR75
APEA	CAPN2	CLASP1	DVNC1H1	GPI	INTS2	MAPDE1	NP3C1	PDIM1	PANGAP1	STID1	TURGCRG	WDR91
ARECEES	CAPTR	CUCI	DYNC112	GPK2	IROS	MDC1	NUDC	PDKAA1	PARCEE2	STK33	TYNIP	WDR92
ARHGAPI	CAPSI	CLICI	DYNC2H1	GSK3B	INCE	MDM1	NUP210	PRKARIA	RAFGEF2	SUPTEH	TXNI 1	WDR90
ARHGAR20	CASK	CLTC	DYNC211	GSN	ITGAR	MED16	NUP214	PRKAR2A	RHOT1	SUPEA	UBA1	WDP91
ARHGAR25	CAVI	CLUAPI	EEE1A1	HAT1	IPT2	MICALS	NUP25	PRKAR2R	RICTOR	SVNE1	UBAG	W/17
ARHGEE18	CRI	CNOT10	EECAB7	HAUST	KATNAL1	MIEC	NUP37	PRKCA	ROSO	SYNE2	UBAP2I	WRAP73
ARI 13B	CC2D2A	CNTRI	EFHC1	HAUST	KATNAL 2	MPDUI	NUP62	PRKD2	RPA1	TAGLN2	UBESC	VTHDE3
ARI 14FP	CCDC191	COI 18A1	EFTUD2	HAUSA	KATNR1	MROH2B	NUP93	PSMR4	RPGRIP1I	TAPT1	UBE4B	YWHAE
ARI 2	CCDC61	COPG1	EGER	HAUSS	KDM3B	MSN	OCRI	PSMC2	RPI 9	TARS1	UGGT1	YWHAG
ARI3	CCDC88A	COPG2	EHD1	HAUSE	KHSPP	MTCI 1	ODE2	PSMC3	RPS6KA1	TRC1D31	LISPAX	YWHAO
ARLE	CCP110	COPSS	EHD3	HDAC1	KIE11	MYPAS	OED1	PSMC5	PPTOP	TCHP	VCAN	7020010
ARI 6IP4	CCT2	CORO1B	EIE2A	HHIP	KIE13A	MYADM	OGER	PSMD14	RRM1	TCP1	VCI	7EV/E19
ADI CIDE	CCT2	CROCC	EIE2C1		KIE12D	MYCPP2	OBCI	PSMD14	RTCA	TUPC1	VCP	750/526
ARLEIPE	CCTA	CSNK1A1	EIE3A	HMGB2	KIE14	MYH10	OSBPI 6	PTRP1	RTNA	THOPI	VDAC2	ZNE318
ARI 8B	CCT5	CSNK2B	FIF4B	HNRNPL	KIE16B	MYO10	P4HA1	PTK2	RUVBI 1	TIGAR	VDAC3	75CAN18
ARMC9	CCT8	CSRP1	FIEAH	HSP904A1	KIE1B	MYO184	PACSI	PTPN23	RUVBL2	TIP2	VPS13A	ZWILCH
ASAP1	CDK1	CSTR	EIEEA	HSP90AP1	KIE1C	MYO19	PAEAH1P1	PTPRK	SCCPDH	TMEM231	VPS35	LIFILCH
ASNS	CDK5PAP2	CTNNA1	EIEG	HSP00R1	KIE20A	MYO18	DADSS1	PLIM1	SCD	TMPO	VTN	
ATG16L1	CENDE	CTNNR1	EIPD 1	HSP50B1	KIE22	MYOIC	PAPD3	PYDN	SCDE	TNPO1	VALAEA	
AUGIOLI	CENT	CUMINDI	LIPRI	HJFA4	NIF22	WITOIC	-ARD3	- ADIN	3005	THEOT	ACWAA A	

Fig. 4 | (A) Confocal micrographs of unphotolabeled (UL) and photolabeled (PL) at user defined primary cilia. (B) A distribution of overall protein abundances is binned by the ratio of copies in a photolabeled (PL) sample to those in a control (CTL) sample annotated as PL/CTL ratio. Ciliary proteins (red) are enriched in the PL group compared to the CTL sample. (C) 608 ciliary proteins identified by Microscoop[™]. (D) Well-known cilia proteins identified by Microscoop[™]. (E) The top 100 enriched proteins were subjected to Gene ontology to reveal cilia related biological process. (F)427 enriched ciliary proteins were subjected to Reactome to reveal cilia related pathways.

Discovery of novel ciliary proteins

To further explore potential ciliary proteins, we analyzed the top 30 most abundant non-ciliary proteins, referred to as putative ciliary proteins (Fig. 5A). Biological process analysis revealed that these putative ciliary proteins are highly associated with cellular protein localization, protein transport, and regulation of protein stability. These functions are closely related to ciliary activities, suggesting that these proteins may have important roles in ciliary biology (Fig. 5B). Protein-protein interaction network analysis demonstrated that many of these putative ciliary proteins (red circles) interact with the 427 identified ciliary proteins, indicating their potential involvement in ciliary functions (Fig. 5C). These interactions suggest that putative ciliary proteins might participate in crucial processes such as protein trafficking to the cilium, stabilization of ciliary structures, and modulation of ciliary signaling pathways. These findings highlight the significance of these proteins in maintaining the structural and functional integrity of cilia. Moreover, the network analysis revealed specific clusters of interactions where putative ciliary proteins are closely connected with well-known ciliary proteins (black circles). This clustering suggests a coordinated role in ciliary maintenance and function, potentially uncovering new regulatory mechanisms within the cilium. These insights provide a deeper understanding of the protein network dynamics within cilia and highlight the complexity of ciliary protein interactions. However, further experimental validation is necessary to confirm the association of these 30 putative ciliary proteins with primary cilia and to elucidate their precise roles and locations within the ciliary context.

A		Protein Description	Gene Name	Protein Description
	PPIB	Peptidyl-prolyl cis-trans isomerase B	CD2AP	CD2-associated protein
	ALDH1A3	Retinaldehyde dehydrogenase 3	NUP98	Nuclear pore complex protein Nup98-Nup96
	CAVIN1	Caveolae-associated protein 1	AP3B1	AP-3 complex subunit beta-1
	SF3A3	Splicing factor 3A subunit 3	GOLGA4	Golgin subfamily A member 4
	TRIM25	E3 ubiquitin/ISG15 ligase TRIM25	CNOT1	CCR4-NOT transcription complex subunit 1
	AP2A2	AP-2 complex subunit alpha-2	COPB1	Coatomer subunit beta
	SRP72	Signal recognition particle subunit SRP72	NPM1	Nucleophosmin
	CTNND1	Catenin delta-1	SERPINH1	Serpin H1
	MARS1 HNRNPDL	MethioninetRNA ligase, cytoplasmic Heterogeneous nuclear ribonucleoprotein D-like	UACA	Uveal autoantigen with coiled-coil domains and ankyrin repeats
		Patatin-like phospholipase domain-containing	TKT	Transketolase
	PNPLA6	protein 6	AARS1	AlaninetRNA ligase, cytoplasmic
	CPNE3	Copine-3	FLOT2	Flotillin-2
	EPHA2	Ephrin type-A receptor 2	TJP1	Tight junction protein ZO-1
	SUPT16H	FACT complex subunit SPT16	NXF1	Nuclear RNA export factor 1
	RPS7	Small ribosomal subunit protein eS7	ARPC1B	Actin-related protein 2/3 complex subunit 1B

Fig. 5. (A) The list of the top 30 non-ciliary proteins (putative ciliary proteins) enriched by Microscoop[™]. (B) The top 30 putative ciliary proteins (A) were subjected to Gene ontology to reveal cilia related biological process. (C) The 30 putative ciliary protein and 427 enriched ciliary proteins were subjected to STRING to reveal protein-protein interaction networks, where the 30 putative ciliary proteins are indicated in red and well-known ciliary proteins are indicated in black.

Conclusion

In this white paper, we present a comprehensive exploration of primary cilia, aiming to deepen our understanding of their composition and biological roles. Our research initiated with the precise targeting and labeling of primary cilia utilizing the Microscoop[™] technology, renowned for its accuracy and specificity in photo-biotinylation within primary cilia. This enabled the provision of a comprehensive list of protein candidates associated with primary cilia.

Our findings demonstrate that the Microscoop[™] technology effectively enables spatially specific photolabeling of primary cilia, facilitating the identification of both known and novel ciliary proteins and thus enhancing our understanding of this essential cellular component. The total ciliary proteins identified amounted to 608, with significant enrichment of 427 ciliary proteins further analyzed for pathway involvement, revealing key ciliary pathways. The identification of putative ciliary proteins and their interactions with known ciliary proteins opens new avenues for ciliary research, emphasizing the need for further validation studies.

To propel cilia research forward, access to reliable and comprehensive proteomics databases is essential. The currently available open-source cilia databases are fragmented and exhibit inconsistencies, marked by variations in data quality and differences across platforms. This situation, combined with the complexity and small size of primary cilia, presents significant challenges to conducting effective research in this field. In an effort to address these issues, we have collected data from several cilia databases, including Gene Ontology⁵, UniProt⁶, and CiliaCarta⁷, into the SYNCELL database. The ciliary proteome from SYNCELL offers a comprehensive and consistent dataset of ciliary proteins, designed to address the current gaps in research. We aim to empower researchers with the necessary tools for advancing our understanding of ciliary functions and mechanisms.

References

- 1. Satir, P. & Christensen, S.T. Overview of structure and function of mammalian cilia. *Annu Rev Physiol* **69**, 377-400 (2007).
- 2. Brown, J.M. & Witman, G.B. Cilia and Diseases. *Bioscience* 64, 1126-1137 (2014).
- 3. Tobin, J.L. & Beales, P.L. Bardet-Biedl syndrome: beyond the cilium. *Pediatr Nephrol* 22, 926-936 (2007).
- 4. Cantagrel, V. et al. Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. *Am J Hum Genet* **83**, 170-179 (2008).
- Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29 (2000).
- 6. UniProt, C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res 51, D523-D531 (2023).
- van Dam, T.J.P. et al. CiliaCarta: An integrated and validated compendium of ciliary genes. *PLoS One* 14, e0216705 (2019).

For more information, please visit syncell.com

SYNCELL Inc.

- 200 Dexter Ave, Watertown, MA 02472, USA
- Info@syncell.com

Copyright © 2024 All Rights Reserved. Syncell and Microscoop™ are trademarks of SYNCELL, Inc., in the United States and/or other countries. Doc#WP002, Jun. 2024.