o4 Subcellular spatial proteomics by microscopy-guided photo-biotinylation reveals novel protein constituents in primary cilia
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Abstract Microscoop® : Photo-induced biotinylation within primary cilia
Image-guided protein extraction at organelle-scale resolution holds significant promise for discovering novel protein constituents within disease- or function-
related subcellular regions like primary cilia. Our firmware-integrated microscopy platform facilitates spatial protein purification through in situ subcellular 1 ROIs Recognizing 2 Microscoop® Photolabeling 3 :’reci_se 'n-sf;l{ Sputigl_l[Biotin-
agging on Primary Cilia

photo-biotinylation at user-defined regions of interest (ROIs) one field of view (FOV) at a time, automatically processing thousands of FOVs. lllumination
patterns of the ROI for each FOV are calculated in real-time using machine learning or traditional image processing. Light activation of amino acid crosslinkers is
achieved by a two-photon laser in the platform, rendering precise protein biotinylation with 300-nanometer precision. A high-speed mechatronic control is
implemented to coordinate imaging, pattern generation, targeted illumination, and FOV movement, allowing for the rapid biotinylation of millions of ROl spots
within hours in cell or tissue samples. Once enough proteins are biotinylated, subsequent cell lysis, avidin pulldown and LC-MS/MS analysis unveil the
subcellular proteome with exceptional sensitivity, specificity, and resolution. Using this technology, termed optoproteomics, we investigated the proteome of
primary cilia in RPE-1 cells, identifying the proteome including 524 known ciliary proteins notably enriched. The top identified proteins encompassed key ciliary ROIs Recognized
trafficking components and those involved in structural support and cellular organization. Gene ontology (GO) enrichment analysis highlighted the significant
association of high-ranking proteins with critical ciliary processes such as assembly, transportation, and signaling, particularly includingproteins involved in
intraciliary transport. A group of novel protein constituents were identified, providing testable hypotheses for their roles in primary cilia. These findings
underscore the efficacy of targeted photolabeling and proteomic analysis in unraveling the network of proteins essential for ciliary function and structure,
showcasing optoproteomics' potential for comprehensive subcellular spatial proteome discovery and its broad utility in cell biology for discovering novel
protein compositions or biomarkers.
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Merge Fig. 3 | Primary cilia are processed by filtering and
segmentation by image processing (left), Confocal
micrographs depicting precise and accurate
photolabeled primary cilia at lateral (xy)- and axial
(z) directions (right). Red: GT335, Green:

NeutrAvidin-488, Blue: DAPI.
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Fig. 4 | A, Confocal micrographs of unphotolabeled (UL) and photolabeled (PL) at user defined primary cilia. B, A distribution of overall protein abundances is binned by the ratio of copies in a photolabeled (PL)
» sample to those in a control (CTL) sample annotated as PL/CTL ratio. Ciliary proteins (red) are enriched in the PL group compared to the CTL sample. C, The top 100 enriched proteins were subjected to Gene
‘ ontology to reveal cilia related biological process. D, Well-known ciliary proteins identified by Microscoop®. E, 427 ciliary proteins significantly enriched by Microscoop®. F, The 427 enriched ciliary proteins were
Cell ’ ’ ’

subjected to Reactome to reveal cilia related pathways. G, The ranking of the top 50 protein abundances (PL/CTL), where ciliary proteins are indicated in red and nonciliary proteins are indicated in grey. H, The
list of the top 30 non-ciliary proteins (putative ciliary proteins) enriched by Microscoop®. I, The top 30 putative ciliary proteins (H) were subjected to Gene ontology to reveal cilia related biological process. J,
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CYClES 5 Top 100 ranked proteins were subjected to STRING to reveal protein-protein interaction networks, where the 30 putative ciliary proteins (H) are indicated in red.
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Summary
Fig. 2 | A, Workflow for ultrahigh-content targeted pohoto-biotinylation includes: (1) identifying and acquiring images of regions of interest by light microscope; (2)  An innovative platform that combines microscopy, deep learning, two-photon illumination, and mechatronics for advanced image-guided photo-biotinylation hypothesis-free proteomics.

generating real-time patterns of ROIls; (3) illuminating the selected region within ROIs for protein photo-biotinylation; (4) moving the stage to the next FOV; and
repeating steps 1-4 for each FOV until all FOVs have been processed. B, Resolution of photo-biotinylation. A line “cross” pattern is photolabeled on fixed U-20S
cells, and the biotinylated molecules are shown in green. DAPI: Blue, scale bar: 10 um. 40x/0.95 NA objective.

* Fast and precise photo-biotinylation of spatially specific proteins from hundreds of thousands of cells enhances the sensitivity of mass spectrometry.
* In mapping the ciliary proteome, 427 known ciliary proteins were enriched, and the validation of previously unreported proteins in primary cilia is underway.
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