Total-sync ultra-content microscopic opto-biotinylation enables high-sensitivity hypothesis-free subcellular protein discovery
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Abstract

Studying proteomes within subcellular structures presents significant challenges, particularly for structures that are membrane-
less or cannot be isolated from cells. Addressing this hurdle, Microscoop® emerges as a groundbreaking technology capable of
precisely capturing proteins at specified subcellular regions of interest (ROls) with nanoscale precision. This sophisticated system A DRAQS5 PL Merge B BL- OFF ON A B SG marker
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Microscoop®, proteins are precisely biotinylated within user-defined cellular organelles, granules, or cell-cell contact surfaces
under a microscope, utilizing directed photochemistry within each field of view (FOV). This process is automatically repeated
across thousands of FOVs to photo-label cellular structures sharing similar morphological features. Subsequently, ample
biotinylated proteins are obtained for streptavidin pulldown and mass spectrometry analysis. The robustness of this approach is - _ =
demonstrated through the successful mapping of the human cellular nucleus proteome, identifying over 1000 nuclear proteins

with a specificity exceeding 90%. Further analysis reveals comprehensive coverage of nuclear complexes and identification of low- Merge
copy-number proteins. In one study using Microscoop® technology to explore the nucleolus proteome, 97 of the top 100
abundant proteins are confirmed to be originated from the nucleolus. In another investigation focusing on stress granules (SG)
proteome, we identified 2,614 proteins, including 200 with low copy numbers. Although the specificity is moderate, with only 66%
of the top 50 abundant proteins mapped with the known stress granules database, functional enrichment analysis highlights 13
non-SG associated proteins as high-confidence core interactors within the stress granule network. Among them, 11 proteins
(PDLIM7, EIF3CL, YWHAE, RPSA, MTA2, UGDH, DDX17, ANLN, PSMD3, PSMA6, and MCM2) are confirmed to co-localize with G3BP1
through immunostaining, thus elevating the specificity eventually to 96% SG association. Overall, our study illustrates that
Microscoop® enables hypothesis-free, comprehensive mapping of subcellular proteomes at user-defined regions of interest, Nuclear

significantly advancing cell biology by revealing new proteins or biomarkers. pore
complex

integrates microscopy, optics, mechatronics, photochemistry, and deep learning to enable high-content in situ photolabeling. With
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Fig. 3 | A, Top- (xy) and side- (z) views of photolabeled subcellular compartments. B, Photolabeled (ON) and unlabeled (OFF) ROIs within nucleoli. C, Top- and side views of each labeled LOG,(PL/CTL) H
] synapse (C1-4) in spreading assay. The side view of photolabeling region is co-localized with CD3, immune synapse marker on the bottom of cells. No biotin signal is found in a non- Protein Log
” e ( photolabeled cell (C5). D, Photolabeled regions of immune synapse of Jurket T cells and Raji B cells are shown in green as a precise and thin labeled layer. Scale bar: 10 um. Green: o Known ® Novel  (PL/CTL)
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Fig. 1 | Schematic workflow of SYNCELL Microscoop® . A total-sync ultra-content microscopic platform that integrates image acquisition, photochemistry, microscopy, optics, and @& jz 460 T of 100 uckoplm | : . '
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ciliary proteins were subjected to STRING to reveal protein-protein interaction networks, where the 30 putative ciliary proteins (F) are indicated in red.
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